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Abstract: 20 

Climate change is rapidly affecting the seasonal timing of spatial demographic processes. 21 

Consequently, resource managers require information from models that simultaneously measure 22 

seasonal, interannual, and spatial variation.  We present a spatio-temporal model that includes 23 

annual, seasonal, and spatial variation in density and then highlight two important uses: (1) 24 

standardizing data that are spatially unbalanced within multiple seasons; and (2) identifying 25 

inter-annual changes in seasonal timing (“phenology”) of population processes.  We demonstrate 26 

these uses with two contrasting case studies: three bottom trawl surveys for yellowtail flounder 27 

(Limanda ferruginea) in the Northwest Atlantic Ocean from 1985-2017, and pelagic tows for 28 

copepodite stage 3+ copepod (Calanus glacialis/marshallae) densities in the eastern Bering Sea 29 

from 1993-2016.   The yellowtail analysis illustrates how data from multiple surveys can be used 30 

to infer density hot spots in an area that is not sampled one or more surveys.  The copepod 31 

analysis assimilates seasonally unbalanced samples to estimate an annual index of the seasonal 32 

timing of copepod abundance, and identifies a positive correlation between this index and cold-33 

pool extent.  We conclude by discussing additional potential uses of seasonal spatio-temporal 34 

models and emphasize their ability to identify climate-driven shifts in the seasonal timing of fish 35 

movement and ecosystem productivity.   36 

  37 
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Introduction 38 

 Resource surveys are conducted worldwide to track changes in abundance for managed 39 

species.  These surveys are typically designed by management agencies to support a participatory 40 

management process, where regulations are developed, proposed, and evaluated over the course 41 

of several months or years.  As a consequence, resource surveys are often designed to index 42 

variation on the same interannual time-scale as management operates, typically occurring over a 43 

fixed time-interval in each year.  Well-known examples include the Christmas count survey for 44 

birds in North America (Butcher et al., 1990), or the spring and fall fishery resource surveys 45 

conducted annually in the Northwest Atlantic Ocean from 1963 to present day (Grosslein, 1969; 46 

Politis et al., 2014).  By occurring at the same time each year, this design is a powerful way to 47 

control for within-year shifts in species distribution while maximizing statistical power for 48 

detecting interannual variation in abundance.   49 

 Despite this common emphasis on capturing interannual variation in resource abundance, 50 

there are many reasons to study changes occurring within a single year.  For example, many 51 

terrestrial and aquatic animals undergo a seasonal migration that partitions habitats available for 52 

feeding and raising young, or follow ontogenetic movement patterns associated with distinct life 53 

stages (e.g., immature vs. mature).  The spatial extent and timing of these seasonal migrations 54 

may shift over time, either due to changes in land use (Zipkin et al., 2012) or environmental 55 

conditions (Nichol et al., 2019).  Detecting these shifts in seasonal migration typically require 56 

data (either via individual tracks or population counts) that arise across multiple seasonal 57 

periods.  In particular, the timing of different population processes (“phenology”) is predicted to 58 

be a sensitive indicator of climate impacts (Scranton and Amarasekare, 2017), so detecting 59 

climate-driven shifts in seasonal processes is a high priority for climate-impact studies.  60 
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Furthermore, there is a growing interest in leveraging citizen-science and other opportunistic 61 

data sources (Callaghan et al., 2018), and proper interpretation of these data sets requires 62 

accounting for variation in population density among seasons.   63 

 In addition to studies detecting climate impacts on phenology, there is also a growing 64 

literature documenting shifts in spatial distribution that are associated with local and regional 65 

climate conditions (Pinsky et al., 2013).  Shifts in spatial distribution can be estimated using 66 

spatio-temporal models (e.g., Thorson, 2019a), which estimate a “latent” (unobserved) map of 67 

population densities across space and how this map of density changes over time (Cressie and 68 

Wikle, 2011).  Importantly, these spatio-temporal models typically include a spatial correlation 69 

function, which allows densities to be predicted even at locations where sampling does not occur 70 

(Cressie et al., 2009).  Density predictions arising from spatially unbalanced sampling may be 71 

biased when sampling locations are not “missing at random”; that is, the probability of sampling 72 

is correlated with the density occurring at a given location (Cressie et al., 2009; Conn et al., 73 

2017).  Nevertheless, spatio-temporal models for spatially unbalanced data can still mitigate bias 74 

arising from ignoring the spatial configuration of data, where changes in the spatial distribution 75 

of sampling would otherwise be confounded with changes in population density (Thorson et al., 76 

2016a).     77 

 While scientific surveys follow a defined sampling design and aim to maintain consistent 78 

protocols, there are uncontrollable circumstances that can disrupt this design.  For example, 79 

severe weather, mechanical problems with the ship, and constraints arising from multiple 80 

objectives and/or budget cuts can lead to greatly reduced or incomplete sampling of survey strata 81 

in a given year.   As a result, it becomes difficult to interpret interannual trends in abundance for 82 

years when the design is not followed.  In stock assessments for marine species, an analyst might 83 
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choose to exclude, downweight, or perform an ad hoc expansion for those incompletely sampled 84 

years.  By contrast, a seasonal spatio-temporal model could use sampling information from 85 

another survey to inform about abundance in unsampled or poorly sampled areas.  Similarly, 86 

surveys of within-season changes in abundance or phenology will sometimes depart from their 87 

design, or the design will shift over time.  In these cases, it becomes necessary to simultaneously 88 

correct for spatial and seasonal patterns in abundance when interpreting seasonally and spatially 89 

unbalanced sampling data.  While past studies have developed models that account for seasonal 90 

variation when forecasting annual changes in abundance (e.g., Grieve et al., 2017; Kanamori et 91 

al., 2019), these studies have not typically demonstrated the potential to assimilate seasonally 92 

unbalanced sampling data (although see Pinto et al. (2018) for one exception).   93 

 In this study, we illustrate how to assimilate spatially and seasonally unbalanced sampling 94 

data using a spatio-temporal model that includes both changes in spatial distribution among years 95 

(interannual variation) and among seasons (seasonal variation).  Models including both spatial 96 

and temporal variation are often termed “spatio-temporal models.”  We start by describing a 97 

default configuration of our proposed seasonal spatio-temporal model, which includes seasonal 98 

and annual main effects and an autocorrelated season-year effect for both intercepts and spatial 99 

variation within a delta-modelling framework.  This configuration preserves correlations in 100 

spatial distribution among seasons for a given year (e.g., annual drivers of distribution), among 101 

years for a given season (e.g., seasonal migratory patterns), and among adjacent seasons within 102 

and across years (e.g., transient hotspots in spatial distribution).  Previous spatio-temporal 103 

models have typically included either interannual variation (e.g., Ono et al., 2018) or seasonal 104 

variation (e.g., Thorson et al., 2016b; Grieve et al., 2017) in isolation.  Alternatively, a few 105 

studies have modeled residual variation in spatial distribution among seasons and years.  106 
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However, these have not modeled the full set of correlations we consider in this study, e.g., 107 

without correlations among years for a given season (Pinto et al., 2018), without correlations 108 

among seasons for a given year (Kai et al., 2017), or without information about the sequence of 109 

seasons within a given year (Kanamori et al., 2019).  We then demonstrate model performance 110 

using two contrasting case-studies:  (1) standardizing seasonal indices of abundance for a 111 

commercially important fish in the Northwest Atlantic, and (2) estimating interannual changes in 112 

phenology for a planktonic crustacean in the northeast Pacific.  These two case-studies highlight 113 

our ability to share information among seasons to account for spatially unbalanced sampling 114 

among years and seasons, and to identify changes in seasonal dynamics over time.   115 

Methods 116 

Model structure 117 

We seek to develop a statistical model that represents spatial variation in population density, and 118 

how density changes both among years (“interannual variation”) and within years (“seasonal 119 

variation”).  We envision that field-sampling data are available, where sample 𝑏𝑏𝑖𝑖 records the 120 

biomass (kg) or abundance (numbers) encountered by the 𝑖𝑖-th sample, occurring at location 𝑠𝑠𝑖𝑖 121 

(within a fixed and pre-defined spatial domain), year 𝑦𝑦𝑖𝑖 (between a minimum and maximum year 122 

𝑦𝑦 ∈ {𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚, … , 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚}), and season 𝑢𝑢𝑖𝑖 (among an ordered set of intervals occurring within a year, 123 

𝑢𝑢𝑖𝑖 ∈ {𝑢𝑢1, … ,𝑢𝑢𝑈𝑈}).  These seasons could be quarters (winter, spring, summer, fall), months 124 

(January-December), weeks (1-52), or any intervals defined within a year (whether having even 125 

or uneven spacing and duration).  In this notation, the combination of year 𝑦𝑦𝑖𝑖 and season 𝑢𝑢𝑖𝑖 is 126 

sufficient to define the time of a given sample, and the term 𝑡𝑡 to describe this combination, 𝑡𝑡 ∈127 

{𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚𝑢𝑢1,𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚𝑢𝑢2, … ,𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚𝑢𝑢𝑈𝑈}, where seasons and years are ordered such that 𝑡𝑡 + 1 is the year-128 
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season combination occurring immediately after 𝑡𝑡 and 𝑡𝑡 − 1 is the year-season combination 129 

preceding 𝑡𝑡.  We note that densities can change rapidly within a given year and encourage future 130 

studies to explore different intervals for season 𝑢𝑢, as we do in the following case study for 131 

copepod densities.   132 

 In particular, we seek a model that has reasonable performance even when data are entirely 133 

unavailable for one or more combinations of year and season.  In these instances, we specify that 134 

estimates in year-season 𝑡𝑡 are shrunk towards predicted density in adjacent year-seasons (𝑡𝑡 − 1 135 

and 𝑡𝑡 + 1), as well as towards estimated density in other seasons for a given year (other 𝑢𝑢 for a 136 

given 𝑦𝑦) and density in other years for a given season (other 𝑦𝑦 for a given 𝑢𝑢).  This specification 137 

implies that the model will include a “main effect” for season and year, as well as an 138 

autocorrelated “interaction” of season and year.   139 

 We implement these criteria using a Poisson-link delta model (Thorson, 2018) that specifies 140 

a probability distribution for random variable 𝐵𝐵, corresponding to the likelihood of response 141 

variable 𝑏𝑏𝑖𝑖 for each sample 𝑖𝑖, Pr(𝐵𝐵 = 𝑏𝑏𝑖𝑖).  This Poisson-link delta model includes the 142 

probability 𝑝𝑝𝑖𝑖 that sample 𝑖𝑖 encounters a given species (i.e., Pr(𝐵𝐵 > 0)), and also the expected 143 

measurement 𝑟𝑟𝑖𝑖 given that the species is encountered, Pr(𝐵𝐵|𝐵𝐵 > 0): 144 

Pr(𝐵𝐵 = 𝑏𝑏𝑖𝑖) = �
1 − 𝑝𝑝𝑖𝑖 if 𝐵𝐵 = 0

𝑝𝑝𝑖𝑖 × 𝑔𝑔{𝐵𝐵|𝑟𝑟𝑖𝑖 ,𝜎𝜎𝑚𝑚2 } if 𝐵𝐵 > 0 (1) 

where we specify a lognormal distribution for the distribution 𝑔𝑔 of positive catches.  This 145 

Poisson-link delta model predicts encounter probability 𝑝𝑝𝑖𝑖 and positive catch rate 𝑟𝑟𝑖𝑖 by modelling 146 

two log-linked linear predictors, log(𝑛𝑛𝑖𝑖) and log(𝑤𝑤𝑖𝑖) for each sample 𝑖𝑖;  𝑛𝑛𝑖𝑖 and 𝑤𝑤𝑖𝑖 are then 147 

transformed to yield 𝑝𝑝𝑖𝑖 and 𝑟𝑟𝑖𝑖:   148 
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𝑝𝑝𝑖𝑖 = 1 − exp(−𝑎𝑎𝑖𝑖 × 𝑛𝑛𝑖𝑖) 

𝑟𝑟𝑖𝑖 =
𝑎𝑎𝑖𝑖 × 𝑛𝑛𝑖𝑖
𝑝𝑝𝑖𝑖

× 𝑤𝑤𝑖𝑖 

(2) 

where 𝑎𝑎𝑖𝑖 is the area-swept offset for sample 𝑖𝑖.  This model structure is designed such that 149 

expected density 𝑑𝑑𝑖𝑖 is the product of encounter probability and positive catch rate, and also the 150 

product of transformed linear predictors (i.e., 𝑑𝑑𝑖𝑖 = 𝑝𝑝𝑖𝑖𝑟𝑟𝑖𝑖 = 𝑛𝑛𝑖𝑖𝑤𝑤𝑖𝑖). When the response-variable 𝑏𝑏𝑖𝑖 151 

is in units biomass, these predictors can be interpreted as numbers density 𝑛𝑛𝑖𝑖 (with units numbers 152 

per area) and average weights 𝑤𝑤𝑖𝑖 (with units biomass per number). Alternatively, if the response-153 

variable is in units numbers, 𝑛𝑛𝑖𝑖 (with units numbers per area) and 𝑤𝑤𝑖𝑖 (with dimensionless units) 154 

describe a parametric link between expected encounter probability and expected numbers given 155 

an encounter, but they are not specifically interpretable as describing numbers-density and 156 

biomass per number. In both interpretations,  𝑛𝑛𝑖𝑖 always enters via the product 𝑎𝑎𝑖𝑖 × 𝑛𝑛𝑖𝑖 such that 157 

𝑛𝑛𝑖𝑖 is expressed as density.   158 

 The Poisson-link delta model is useful relative to other delta-models because both linear 159 

predictors use a log-link function, so that all effects are additive in their impact on predicted log-160 

density.  Specifically, we specify that: 161 

log(𝑛𝑛𝑖𝑖) = 𝛽𝛽𝑛𝑛∗(𝑡𝑡𝑖𝑖)���
𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌−𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

+ 𝜔𝜔𝑛𝑛∗(𝑠𝑠𝑖𝑖)���
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

+ 𝜉𝜉𝑛𝑛𝑛𝑛∗ (𝑠𝑠𝑖𝑖 ,𝑢𝑢𝑖𝑖)�������
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

+ 𝜉𝜉𝑛𝑛𝑛𝑛∗ (𝑠𝑠𝑖𝑖 ,𝑦𝑦𝑖𝑖)�������
𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

+ 𝜀𝜀𝑛𝑛∗(𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖)�����
𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌−𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (3) 

where the other linear predictor 𝑤𝑤𝑖𝑖 is defined identically except that the subscript 𝑛𝑛 is replaced 162 

by 𝑤𝑤 for all coefficients.  In applications with limited information (either due to low sample sizes 163 

or small variance), the variance of one or more of these terms may be estimated near zero such 164 

that the corresponding term is then dropped from the model.  Specifying an additive structure in 165 
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log-space for both variables (𝑛𝑛𝑖𝑖 and 𝑤𝑤𝑖𝑖) simplifies interpretation of estimated terms where, e.g., 166 

𝜔𝜔𝑛𝑛∗(𝑠𝑠1) = 0.1 indicates that 𝑛𝑛(𝑠𝑠1, 𝑡𝑡) is expected to be 10% higher at location 𝑠𝑠1 than at location 167 

𝑠𝑠2 where 𝜔𝜔𝑛𝑛∗(𝑠𝑠2) = 0.  We also hypothesize that this additive structure in log-space will be more 168 

parsimonious than a conventional delta-model, although testing this is an empirical question for 169 

future research.   170 

 Spatial terms are estimated using a predictive-process framework (Banerjee et al., 2008), 171 

such that we estimate the value of each spatial variable at a set of “knots,” where the number of 172 

knots 𝑛𝑛𝑥𝑥 is specified by the user in a balance between computational speed and spatial 173 

resolution.  In the case of spatial variation, we specify a Gaussian Markov random field for 174 

vector 𝛚𝛚𝑛𝑛
∗   containing the value of the spatial variable 𝜔𝜔𝑛𝑛(𝑠𝑠) at each knot 𝑠𝑠: 175 

𝛚𝛚𝑛𝑛~𝑀𝑀𝑀𝑀𝑀𝑀(𝟎𝟎,𝜎𝜎𝑛𝑛𝑛𝑛2 𝐑𝐑𝑛𝑛) (4) 

where 𝐑𝐑𝑛𝑛 is the correlation matrix and 𝜎𝜎𝑛𝑛𝑛𝑛2  is the pointwise variance such that 𝜎𝜎𝑛𝑛𝑛𝑛2 𝐑𝐑𝑛𝑛 is the 176 

spatial covariance.  We then project from the values 𝛚𝛚𝑛𝑛 at knots to the values 𝛚𝛚𝑛𝑛
∗  at the location 177 

of available data.  The correlation matrix, in turn, is calculated based on a vector of distance 178 

𝐝𝐝(𝑠𝑠1, 𝑠𝑠2) between any pair of locations 𝑠𝑠1 and 𝑠𝑠2, and we use a sparse precision matrix that 179 

approximates a Matérn correlation function (Lindgren et al., 2011): 180 

𝐑𝐑𝑛𝑛(𝑠𝑠1, 𝑠𝑠1) =
1

2𝜈𝜈−1Γ(𝜈𝜈)
× (𝜅𝜅𝑛𝑛|𝐝𝐝(𝑠𝑠1, 𝑠𝑠2)𝐇𝐇|)𝜈𝜈 × 𝐾𝐾𝜈𝜈(𝜅𝜅𝑛𝑛|𝐝𝐝(𝑠𝑠1, 𝑠𝑠2)𝐇𝐇|) (5) 

where we estimate a linear transformation 𝐇𝐇 involving estimated parameters (representing 181 

geometric anisotropy) and decorrelation rate 𝜅𝜅𝑛𝑛.  Given the value of a spatial variable at each 182 

knot, the value at any given location 𝑠𝑠 within spatial domain Ω is then calculated using bilinear 183 

interpolation, using a projection matrix calculated by the R package R-INLA (Lindgren, 2012).  184 
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Season and year main spatial effects are specified similarly, except the probability of 𝛏𝛏𝑛𝑛𝑛𝑛(𝑢𝑢) is 185 

calculated independently for every season 𝑢𝑢, and the probability of 𝛏𝛏𝑛𝑛𝑛𝑛(𝑦𝑦) is calculated 186 

independently for every year 𝑦𝑦.  However, the year-season interaction 𝛆𝛆𝑛𝑛(𝑠𝑠, 𝑡𝑡) is autocorrelated 187 

across the ordered year-season index 𝑡𝑡: 188 

𝛆𝛆𝑛𝑛(𝑠𝑠, 𝑡𝑡)~ � 𝑀𝑀𝑀𝑀𝑀𝑀(𝟎𝟎,𝐐𝐐−1) if 𝑡𝑡 = 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
𝑀𝑀𝑀𝑀𝑀𝑀(𝜌𝜌𝑛𝑛𝑛𝑛𝛆𝛆𝑛𝑛(𝑠𝑠, 𝑡𝑡 − 1),𝐐𝐐−1) if 𝑡𝑡 > 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

 
(6) 

where the degree of autocorrelation 𝜌𝜌𝑛𝑛𝑛𝑛 in spatio-temporal variation 𝛆𝛆𝑛𝑛(𝑠𝑠, 𝑡𝑡) is also estimated.  189 

We here assume that the decorrelation-rate parameters 𝜅𝜅𝑛𝑛 and 𝜅𝜅𝑤𝑤 are identical for spatial and 190 

spatio-temporal components and different between the two linear predictors 𝑛𝑛 and 𝑤𝑤; future 191 

research could explore alternative specification for these hyperparameters.   192 

 Similarly, intercepts 𝛽𝛽𝑛𝑛(𝑡𝑡) are specified such that they can be interpolated for season-year 193 

combinations without any data using information from adjacent season-years, other years of the 194 

same season, or other seasons of the same year.  This is again accomplished by including season 195 

and year main effects, and an autocorrelated interaction of season and year: 196 

𝛽𝛽𝑛𝑛∗(𝑡𝑡) = 𝜇𝜇𝛽𝛽 + 𝛽𝛽𝑛𝑛𝑛𝑛(𝑢𝑢) + 𝛽𝛽𝑛𝑛𝑛𝑛(𝑦𝑦) + 𝛽𝛽𝑛𝑛𝑛𝑛(𝑡𝑡) (7) 

Where 𝜇𝜇𝛽𝛽 is the average intercept across all seasons and years, 𝛽𝛽𝑛𝑛𝑛𝑛(𝑢𝑢) captures differences in 197 

expected intercept among seasons 𝑢𝑢, 𝛽𝛽𝑛𝑛𝑛𝑛(𝑦𝑦) captures differences in expected intercepts among 198 

years 𝑦𝑦, and 𝛽𝛽𝑛𝑛𝑛𝑛(𝑡𝑡) represents an autocorrelated season-year interaction:  199 

𝛽𝛽𝑛𝑛𝑛𝑛(𝑡𝑡)~ �
𝑁𝑁(0,𝜎𝜎𝑛𝑛𝑛𝑛2 ) if 𝑡𝑡 = 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁(𝜌𝜌𝑛𝑛𝑛𝑛𝛽𝛽𝑛𝑛𝑛𝑛(𝑡𝑡 − 1),𝜎𝜎𝑛𝑛𝑛𝑛2 ) if 𝑡𝑡 > 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
 

(8) 

and where the magnitude of autocorrelation is again estimated from available data.  We ensure 200 

identifiability for 𝜇𝜇𝛽𝛽, 𝛽𝛽𝑛𝑛𝑛𝑛(𝑢𝑢), and 𝛽𝛽𝑛𝑛𝑛𝑛(𝑦𝑦) by imposing a corner constraint on the season and year 201 
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effects (i.e., 𝛽𝛽𝑛𝑛𝑛𝑛(𝑢𝑢) = 0 and 𝛽𝛽𝑛𝑛𝑛𝑛(𝑦𝑦) = 0 for the first season 𝑢𝑢 and year 𝑦𝑦).  This corner 202 

constraint is necessary for intercepts (i.e., Eq. 7) but not spatial terms (i.e., Eq. 3) because the 203 

season and year intercepts are treated as fixed effects, while the season and year spatial terms are 204 

treated as random effects.  We note that this model structure imposes no constraints on the 205 

expected “shape” of seasonal variation; that is, the model can capture unimodal or multi-modal 206 

distribution of abundance across seasons within a year.   207 

 Parameters are estimated using release 3.2.0 of package VAST (Thorson, 2019b), which is 208 

publicly available online (https://github.com/James-Thorson/VAST), and runs within the R 209 

statistical environment (R Core Team, 2017).  The performance of VAST for models such as this 210 

has been simulation-tested previously (Thorson et al., 2015, 2016a; Grüss et al., 2019; Johnson 211 

et al., 2019; Brodie et al., 2020), and we recommend future simulation experiments exploring 212 

performance for the specific seasonal structure proposed here.  VAST estimates fixed effects 213 

while approximating their marginal likelihood using the Laplace approximation (Skaug and 214 

Fournier, 2006).  The Laplace approximation is implemented in turn using R package TMB 215 

(Kristensen et al., 2016), and computational efficiency is improved using automatic 216 

differentiation (Fournier et al., 2012) and the SPDE approximation to spatial correlation matrices 217 

(and associated projection matrices) from R-INLA (Lindgren and Rue, 2015).  Standard errors 218 

are calculated using a generalization of the delta-method (Kass and Steffey, 1989), and standard 219 

errors are available for predictions of local density after estimating all fixed and random effects: 220 

𝑑𝑑(𝑠𝑠, 𝑡𝑡) = 𝑛𝑛(𝑠𝑠, 𝑡𝑡) × 𝑤𝑤(𝑠𝑠, 𝑡𝑡)

= exp�𝛽𝛽𝑛𝑛∗(𝑡𝑡) + 𝜔𝜔𝑛𝑛∗(𝑠𝑠) + 𝜉𝜉𝑛𝑛𝑛𝑛∗ (𝑠𝑠,𝑢𝑢) + 𝜉𝜉𝑛𝑛𝑛𝑛∗ (𝑠𝑠,𝑦𝑦) + 𝜀𝜀𝑛𝑛∗(𝑠𝑠, 𝑡𝑡)�

× exp�𝛽𝛽𝑤𝑤∗ (𝑡𝑡) + 𝜔𝜔𝑤𝑤∗ (𝑠𝑠) + 𝜉𝜉𝑤𝑤𝑤𝑤∗ (𝑠𝑠,𝑢𝑢) + 𝜉𝜉𝑤𝑤𝑤𝑤∗ (𝑠𝑠,𝑦𝑦) + 𝜀𝜀𝑤𝑤∗ (𝑠𝑠, 𝑡𝑡)� 

(9) 

https://github.com/James-Thorson/VAST
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where density can then be visualized or further processed to yield derived statistics.  For 221 

example, total abundance is calculated as the area-weighted sum of density 𝑑𝑑(𝑠𝑠, 𝑡𝑡) predicted at a 222 

fine spatial resolution: 223 

𝐷𝐷(𝑡𝑡) = �𝑎𝑎(𝑠𝑠)𝑑𝑑(𝑠𝑠, 𝑡𝑡)
𝑛𝑛𝑠𝑠

𝑠𝑠=1

 
(10) 

Where 𝑛𝑛𝑠𝑠 is the number of fine-scale predictions and 𝑎𝑎(𝑠𝑠) is the spatial area associated with each 224 

prediction.   225 

Case study demonstrations 226 

We apply this model to two case studies that are chosen to represent different geographic areas, 227 

seasonal resolution, taxonomic focus, and inferential goals.   228 

1. Yellowtail flounder on Georges Bank:  The first case-study involves yellowtail flounder 229 

(Limanda ferruginea) on Georges Bank, a shallow stretch of the continental shelf in the 230 

Northwest Atlantic Ocean.  This commercially important species is sampled by three bottom 231 

trawl surveys that each provide a different snapshot of fish distribution and abundance.  We 232 

seek to answer: can we standardize data from multiple surveys to share information across 233 

seasonal sampling programs and thereby predict density in unsampled times and areas? 234 

2. Copepods in the eastern Bering Sea:  The second case-study involves copepodite stage 3-6 235 

abundance in oblique plankton tows from five meters above sea floor to water surface for 236 

Calanus marshallae/glacialis.  These copepods are a substantial component of diet for fish, 237 

seabirds and marine mammals in the eastern Bering Sea (Livingston et al., 2017).  Copepods 238 

undergo rapid population growth and decline during the annual sampling interval, and this 239 

application is therefore useful to highlight the potential for a relatively fine resolution for 240 
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seasonal intervals.  We seek to answer: can seasonally unbalanced sampling data be used to 241 

identify changes in the seasonal timing of population densities; for example, to estimate the 242 

seasonal match between larval fish and zooplankton prey? 243 

We discuss each in more detail below (see Fig. 1 for seasonal and interannual variability in data 244 

availability).   245 

Case study #1:  Yellowtail flounder on Georges Bank 246 

Yellowtail flounder are a historically important component of the Georges Bank fishery and 247 

ecosystem (Stone et al., 2004), but are currently at low biomass due to low recruitment and 248 

unexplained mortality of adults (Legault and McCurdy, 2018). Despite a large amount of age-249 

based data available for this stock, standard stock assessment models have performed poorly 250 

with large retrospective patterns and were replaced with an index-based approach in 2014 251 

(Legault et al., 2014).  252 

 We compile sampling data for three bottom trawl surveys 1985-2017 (see Fig. S1):  Spring 253 

(March 24 – April 25) and Fall (Sept. 30 – Nov. 6) bottom trawl surveys conducted by the 254 

Northeast Fisheries Science Center (NEFSC), and a bottom trawl survey by Department of 255 

Fisheries and Oceans (DFO) Canada (Feb. 11 – March 29) (O’Boyle et al., 1995; Politis et al., 256 

2014).  The NEFSC Spring and Fall surveys switched vessels in 2009, and we use data converted 257 

to units of the earlier survey based on paired intercalibration sampling (Miller et al., 2010).  By 258 

contrast, the DFO survey gear has been consistent over time, and uses different protocols than 259 

the earlier US survey, hence likely catching a different proportion of local abundance (termed 260 

“catchability”) than the US surveys.  Surveys also differ in their spatial footprint of sampling: the 261 

US surveys follow a stratified random design that covers the entire stock boundary, while the 262 
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DFO survey uses a different stratified random design and samples only a subset of this spatial 263 

area, avoiding the southwestern corner as well as moraine habitat in the western portion (Stone 264 

and Gross, 2012).   265 

 Design-based indices of abundance are available for all three surveys, although we note that 266 

the DFO design-based index is calculated only for the portion of the stock sampled by that 267 

survey.  We also fit an alternative multivariate spatio-temporal model, which treats each season 268 

as a separate category and estimates independent spatial and spatio-temporal variation for each 269 

season.  This “default” specification is widely used in fisheries index-standardization (Thorson, 270 

2019b), and therefore provides a reference-value for abundance indices calculated in a more 271 

conventional manner.   272 

 The Georges Bank yellowtail flounder stock is defined for an area that straddles the Hague 273 

Line separating the US and Canadian exclusive economic zones (EEZ), requiring a method to 274 

allocate the total quota between the two countries.  Swept area estimates from the three surveys 275 

(DFO, NEFSC spring and NEFSC fall) are averaged, proportions on either side of the Hague 276 

Line are calculated, and then a loess smooth is fit to the respective time series east/west. The 277 

total annual quota is allocated between countries based on the terminal year smoothed proportion 278 

of total stock biomass in US and Canadian waters (Murawski and Gavaris, 2004).  Given the 279 

importance of comparing estimates of abundance between DFO and US surveys, we seek to 280 

develop an alternative model that can predict density using data from all surveys over the spatial 281 

footprint of the stock assessment.     282 

 We use a model with annual and seasonal main effects for both intercepts and spatial 283 

variation, using 250 knots to approximate spatial variables, and an autoregressive process for the 284 

interaction of year and season.  Initial runs of the full model showed that several variance 285 
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components were estimated to be zero, and we changed the model to avoid numerical problems 286 

associated with a parameter estimated at a bound (i.e., an estimated variance of zero); see Table 287 

S3 for details.  The seasonal main effect for intercepts includes the effect of both seasonal 288 

differences in density as well as differences in catchability among gears, and resulting density 289 

estimates are not directly comparable among surveys due to this missing information regarding 290 

catchability differences.  We therefore display resulting abundance indices after scaling each 291 

series to have a mean of 1.0 across years.  We focus interpretation by displaying the 292 

autocorrelated spatial variation in the season-year interaction, to demonstrate how this model 293 

component allows information to be shared between seasons.   294 

Case study #2:  Copepods in the eastern Bering Sea 295 

Copepods are an important component of secondary production in the Bering Sea, and occur in 296 

stomach samples for a wide range of commercially important fishes (Livingston et al., 2017).  297 

Two species of copepod (Calanus glacialis and C. marshallae) co-occur in the eastern Bering 298 

Sea and are difficult to identify to species, and we refer to them collectively as C. 299 

glacialis/marshallae in the following (Campbell et al., 2016).  C. glacialis/marshallae has one 300 

cohort per year in the eastern Bering Sea and is a key prey for multiple fish species in their first 301 

year of life (Strasburger et al., 2014).  Productivity and spatial dynamics in this ecosystem are 302 

strongly associated with wintertime sea-ice extent (Hunt et al., 2011) and the resulting extent of 303 

cold near-bottom waters (termed the ‘cold pool;’ Sigler et al., 2011) during the summer growing 304 

season for copepods (Eisner et al., 2014, 2018; Kimmel et al., 2018). Historically, zooplankton 305 

sampling in the EBS occurred on process-oriented surveys, which varied year to year in their 306 

spatial and temporal coverage. Recently, sampling has occurred more regularly in spring (late 307 

April) and fall (late September) along the 70 m isobath from the southeastern Bering Sea M2 308 
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mooring location (56.87N, 164.05W) to the M8 mooring location (62.19N, 174.69W). 309 

Additionally, zooplankton sampling has occurred in recent years along a grid in the southeastern 310 

Bering Sea from the inner to outer shelf (~ 30-180 m) from 54.5 to 60 N in May and again in 311 

August/September. We here restrict samples to oblique tows of a bongo net, starting near bottom 312 

and ending near surface (see Fig. S2), and approximate spatial variation using 100 knots.  These 313 

oblique tows include a measure of total volume swept, and we divide the total number of 314 

copepodite stage 3+ copepod (Calanus glacialis/marshallae) by volume swept, and then 315 

multiply by the seafloor depth at the beginning of the tow to obtain vertically integrated 316 

numbers-density.  Using vertically integrated numbers-density as response-variable then allows 317 

us to predict vertically integrated densities across a standard survey area, where the sum across 318 

this survey area represents a prediction of vertical and spatially integrated abundance in numbers.  319 

Future studies could instead include water-column height as an offset, and expand densities 320 

while defining area, 𝑎𝑎(𝑠𝑠) in Eq. 10, as the product of surface-area and water-column height; we 321 

leave this comparison as a topic of future research.  C. glacialis/marshallae occur in 97% (3691 322 

of 3802) of all available samples, and there is little information available to identify spatial, 323 

temporal, or seasonal patterns in encounter probability.  We therefore use a reduced model 324 

wherein we remove all spatial and temporal variation in the first linear predictor (i.e., 𝑛𝑛𝑖𝑖 = 𝑛𝑛 for 325 

all locations 𝑠𝑠, seasons 𝑢𝑢, and years 𝑦𝑦), such that the model estimates a single encounter 326 

probability for all samples, and focuses inference on the expected number of Calanus 327 

encountered in each sample.  The model again estimated several variance terms near zero, and 328 

we eliminated terms with zero variance to avoid numerical difficulties (see Table S3 for details).   329 

 We specifically seek to measure interannual changes in C. glacialis/marshallae phenology.  330 

To do so, we calculate the weighted average of seasonal intervals, where each season is weighted 331 
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by the total abundance in that season.  This “abundance-weighted average season” statistic is 332 

analogous to “center of gravity” (COG), which is calculated as the abundance-weighted spatial 333 

location for a population;  COG is widely used as a measure of spatial distribution shifts (Pinsky 334 

and Palumbi, 2013; Thorson et al., 2016a).  We specifically calculate abundance-weighted 335 

average season 𝑢𝑢�(𝑡𝑡) as: 336 

𝑢𝑢�(𝑦𝑦) = ��
𝐷𝐷(𝑡𝑡)
𝐷𝐷𝑦𝑦

× 𝑢𝑢𝑡𝑡�
𝑡𝑡∈𝐭𝐭𝑦𝑦

 
(11) 

where 𝐭𝐭𝑦𝑦 is the vector of season-year indices 𝑡𝑡 in year 𝑦𝑦, 𝑢𝑢𝑡𝑡 is the season corresponding to 337 

season-year 𝑡𝑡, 𝐷𝐷𝑦𝑦 is the area-weighted sum of densities across locations and seasons in year 𝑦𝑦, 338 

𝐷𝐷𝑦𝑦 = ∑ 𝐷𝐷(𝑡𝑡)𝑡𝑡∈𝐭𝐭𝑦𝑦 , and 𝐷𝐷(𝑡𝑡) is defined in Eq. 10.  Standard errors for 𝑢𝑢�(𝑡𝑡) are again calculated 339 

using the generalized delta-method.  This index does not measure “peak abundance” per se, but 340 

instead measures years when C. glacialis/marshallae abundance is high in early or later portions 341 

of the summer growing season. Given the known climate-sensitivity of copepod production in 342 

the Bering Sea, we compare our phenology estimate with the summertime areal extent of the 343 

cold pool (waters < 2 °C) on the EBS shelf (Robert Lauth, personal communication) as measured 344 

using temperature sensors deployed on bottom trawl gear in the eastern Bering Sea (Lauth and 345 

Conner, 2016).  346 

 Finally, we explore the sensitivity of the abundance-weighted average season 𝑢𝑢�(𝑡𝑡) to the a 347 

priori specification of the number of seasonal intervals that are modeled in each year.  To do so, 348 

we contrast results from our model using month-long intervals (nine seasonal-intervals per year 349 

after excluding months with no sampling) with either aggregating all samples into Spring (Feb.-350 

May) and Summer/Fall (June-Oct.) seasons (two seasons per year), or aggregating samples into 351 
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two-week intervals (18 seasonal intervals per year with data).  For each of these seasonal 352 

specifications, we fit the same seasonal spatio-temporal model and compare resulting estimates 353 

of 𝑢𝑢�(𝑡𝑡); we hypothesize that either month-long or biweekly intervals will be sufficiently fine-354 

grained to yield similar results, while the two-season model will have such coarse seasonal 355 

resolution that it will likely result in different estimates than the other two models. 356 

Results 357 

We use the same seasonal spatio-temporal model for both case studies (see Fig. S3 for 358 

triangulated meshes in each example).  However, we use this model for very different inference 359 

in each case study, and therefore address them separately below. 360 

Georges Bank yellowtail flounder:  Inferring seasonal variation in unsampled habitat 361 

We first compare total abundance of yellowtail flounder on Georges Bank in each of three 362 

seasons, estimated using the seasonal spatio-temporal model with either a design-based index or 363 

a simpler spatio-temporal model that is run independently for each season (Fig. 2).  This 364 

comparison shows that the two model-based indices have similar estimates of total abundance, 365 

and differ more from the design-based index for DFO.  We note that the design-based index for 366 

DFO has a large spike in 2008/2009, and this spike is not represented in either model-based 367 

index.  Model exploration shows that this spike arose from one sample in each of those years 368 

wherein the DFO survey caught an anomalously large quantity of yellowtail flounder.  The 369 

model-based indices both treat these observations as “outliers” relative to the weighting used by 370 

the design-based estimator, and hence these samples have less statistical leverage in the model-371 

based than the design-based index. 372 
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 We next explore the ways in which the seasonal spatio-temporal model shares information 373 

among seasons.  The largest consequence is that it extrapolates the DFO index back to 374 

1985/1986, when there was no DFO sampling (see Fig. 2 top panel and Fig. S1).  This 375 

extrapolation is based on the main effects of season and year for both intercepts and spatial 376 

variation, such that the index in those years is “shrunk” towards the approximately stable trend in 377 

abundance seen in the other seasons in that year; the extrapolation also results in an increase in 378 

standard errors (width of blue shaded area) in those years relative to others.  We also highlight 379 

the consequence of autocorrelation (𝜌𝜌𝑛𝑛𝑛𝑛 = 0.85 and 𝜌𝜌𝑤𝑤𝑤𝑤 = −0.19; see Table 1) on estimated 380 

spatio-temporal variation arising across seasons and years (Fig. 3).  In 1989-1992, for example, 381 

the spring and fall surveys both encountered an increase in density relative to long-term averages 382 

in the southwestern stock area, where DFO sampling does not occur.  This hot spot is estimated 383 

to occur starting in fall 1989, and persists consecutively through 1990 and into the DFO survey 384 

in 1991, before largely reverting to long-term densities by the spring survey in 1991.  These and 385 

other examples of autocorrelated season-year variation cause the seasonal model to shrink 386 

estimates in areas lacking samples towards their estimates in other seasons with more spatially 387 

comprehensive sampling.   388 

Eastern Bering Sea copepods: Measuring interannual variation in phenology 389 

We next explore the behavior of the seasonal model when applied to a case study with more 390 

seasons (nine intervals each lasting one month).  This case-study exhibits an extremely 391 

unbalanced sampling design across seasons (see bottom panel of Fig. 1), where the majority of 392 

sampling is available in either April-May or Aug.-Sept.  We start by illustrating C. 393 

glacialis/marshallae density estimates in four selected years (Fig. 4, showing 394 

1994/2002/2007/2012).  Later years (2007/2012) are selected to show the impact of the spatially 395 
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distributed sampling design in May and Aug.-Oct. that is currently implemented in the eastern 396 

Bering Sea, while earlier years (1994/2002) are selected to show the relatively opportunistic 397 

sampling that occurred in these years (see Fig. S2 for spatial coverage of sampling across all 398 

years).  Density plots (Fig. 4) again show the role of autocorrelated season-year effects (𝜌𝜌𝑤𝑤𝑤𝑤 =399 

0.72; see Table 1) on model performance where, for example, the spatial configuration of high-400 

density areas in 2012 is essentially interpolated between May and August, given that sampling 401 

data are sparse between these two months.  Alternatively, years with few sampling data in any 402 

month (e.g., 1994) are shrunk towards the estimate of the season main-effect, where the model 403 

typically estimates increased densities and a broader distribution of high-density habitats in June-404 

July relative to early (Feb.-April) or late (Sept.-Oct.) months.  405 

 We next illustrate abundance indices across seasons for each year (Fig. 5), which confirms 406 

that the seasonal main-effects are estimated to follow a dome-shaped pattern in C. 407 

glacialis/marshallae density with a peak in June-July (as shown in 1996/2001, when data are 408 

particularly sparse). As noted in the Methods section, this dome-shaped pattern is not specified 409 

within the estimation model, and instead arises purely from average patterns seen in the data.  410 

Similarly, the action of the year main-effect is also apparent.  For example, sampling in April 411 

1994 yields elevated density relative to its spatial and seasonal expectation and the model 412 

therefore predicts elevated density for all seasons in that year.  By contrast, sampling in August 413 

2002 yielded lower densities than the average for its season and location, resulting in an estimate 414 

of low density for that entire year.  In these years with seasonally restricted sampling (e.g., 415 

1993/2002), the confidence intervals are relatively wide compared with years with seasonally 416 

distributed sampling (e.g., 2007-2012).  417 
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 Finally, we compute the abundance-weighted average season for C. glacialis/marshallae in 418 

the eastern Bering Sea (Fig. 6).  Standard errors are sufficiently small to detect interannual 419 

variation in phenology (e.g., where 2003 is earlier than 2007) during years with seasonally 420 

distributed sampling (approximately 2003 onward), while intervals are much wider in earlier 421 

years.  The predicted index across all years ranges between mid-June to late July, and therefore 422 

spans nearly 45 days.  As expected, the index is positively correlated (Pearson correlation = 0.60) 423 

with cold-pool extent, where “warm years” (those with a small cold pool) are estimated to have 424 

earlier average copepod phenology and vice-versa for “cold years” with a large cold pool.  The 425 

index is similar when specifying 18 biweekly seasonal intervals (Fig. S4).  Indices from these 426 

two models are also correlated with the index estimated using two (Spring vs. Summer/Fall) 427 

seasonal intervals, although the latter model does not yield an interpretable scale for variation 428 

among years due to the coarse resolution of seasonal intervals.   429 

Discussion 430 

In this study, we have demonstrated how a seasonal spatio-temporal model can be constructed to 431 

account for spatially and seasonally unbalanced sampling data.  We used two contrasting case 432 

studies to show that this seasonal spatio-temporal model can yield information that is useful for 433 

both ecological insight as well as applied fisheries management.  We first discuss each of these 434 

case studies in detail, and then speculate about other potential applications.   435 

 Our first case study focused on inferring interannual changes in resource abundance for a 436 

commercially important fish while accounting for spatial areas that are regularly sampled by 437 

some but not all seasonal surveys.  This situation is common in many transboundary 438 

negotiations, for example, for fisheries in the North Sea (Pedersen and Berg, 2017), although the 439 
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yellowtail flounder case-study had a unique difficulty of involving different spatial coverage for 440 

data in each season.  While both the NEFSC surveys and the DFO survey have a stratified 441 

random design, the DFO survey has a higher sampling rate in Canadian waters than US waters 442 

(see Fig. S1). In particular, the portion of the DFO survey used in the Georges Bank yellowtail 443 

flounder assessment does not cover the southwest portion of the bank, which is covered by the 444 

two NEFSC surveys.  There are DFO survey strata in this area, but this area often does not 445 

contain sample locations due to the low sampling rate or is dropped entirely when the survey has 446 

to end early due to weather or vessel troubles. These practical and logistical factors are common 447 

in bottom trawl surveys and lead to imbalanced sampling and coverage among surveys. Applying 448 

a seasonal spatio-temporal model provides a statistically sound approach to combining the 449 

information from the multiple surveys; we showed that it is useful specifically to infer hot spots 450 

in density in unsampled areas and times based on sampling occurring in other seasons. This may 451 

be particularly important when the spatial distribution of biomass is estimated for areas that 452 

differ from the survey stratification, as in the quota allocation sharing agreement for this stock.  453 

 By contrast, the second case study focused on inferring interannual variation in phenology 454 

for two pelagic crustacean species using vertically integrated tows from many different sampling 455 

programs, each with different seasonal timing and spatial distribution.  Resulting estimates of 456 

abundance-weighted average season showed a clear and statistically significant association 457 

between phenology and oceanographic conditions, while allowing comparison of phenology 458 

across years with greatly different seasonal data availability.  Numerous studies have shown that 459 

C. glacialis/marshallae populations have peak abundance in June and July (e.g., Eisner et al. 460 

(2018) using data from 2008-2010), and also respond to interannual variability in temperature on 461 

the southeastern Bering Sea shelf (Baier and Napp, 2003; Coyle et al., 2008; Eisner et al., 2014, 462 
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2018; Coyle and Gibson, 2017; Kimmel et al., 2018).  In years with early ice retreat, C. 463 

glacialis/marshallae that emerge from diapause will experience a potential mismatch with the 464 

spring phytoplankton bloom that occurs later during warm years (Brown and Arrigo, 2013; 465 

Sigler et al., 2014, 2016). This mismatch combined with warmer temperatures that accelerate 466 

development, appears to reduce C. marshallae/glacialis abundances and they typically have low 467 

abundance by mid-August to late September in warm years, perhaps due to entry into diapause 468 

(Kimmel et al., 2018). During years of late ice retreat, by contrast, C. glacialis/marshallae 469 

benefits from the presence of ice-associated algae that are grazed heavily to fuel egg production 470 

(Campbell et al., 2016). Cooler temperatures slow development rates and allow accumulation of 471 

individuals that persist on the shelf due to a delay of entry into diapause (Coyle and Gibson, 472 

2017; Kimmel et al., 2018). Continued warming of ocean waters is expected to impact 473 

phenology of Calanus by shifting the timing of emergence and exit into diapause (Wilson et al., 474 

2016). Long-term warming has already caused earlier appearance of C. glacialis in the White 475 

Sea (Persson et al., 2012; Usov et al., 2013) and C. finmarchicus in Svalbard and northern 476 

Iceland (Espinasse et al., 2018).  477 

 Improved information regarding seasonal timing derived from seasonal spatio-temporal 478 

models could be useful for a wide variety of ecosystem studies and management questions.  In 479 

the eastern Bering Sea, for example, the abundance of C. marshallae/glacialis during the fall is 480 

associated with walleye pollock (Gadus chalcogrammus) condition and early-life survival 481 

(Heintz et al., 2013; Siddon et al., 2013; Eisner and Yasumiishi, 2018).  Notably, positive 482 

significant linear relationships have been found between late summer abundances of large 483 

copepods, and abundances of age-3 pollock three years later when they enter the fishery (Eisner 484 

and Yasumiishi, 2018). By estimating how phenology of C. glacialis/marshallae varies from 485 
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year to year, this study shows that changes in phenology likely contribute to interannual variation 486 

in late summer abundance. Detecting changes in phenology can affect the seasonal timing of 487 

spawning migrations and therefore the interpretation of pre-season test fisheries (Flynn and 488 

Hilborn, 2004).   489 

 In addition to being useful for detecting changes in phenology, the approach described here 490 

could be useful for standardizing survey indices that are potentially biased by seasonal changes 491 

in abundance or distribution. For instance, for taxa, stages, or processes that develop rapidly in 492 

time and vary over space (e.g., zooplankton, larval fish, and squid abundance) small changes in 493 

survey timing can result in biased estimates of abundance. Seasonal spatial-temporal models 494 

could be used to control for survey timing and extent. In a similar vein, fisheries scientists 495 

continue to use catch-per-unit-effort from fishery data to index changes in fish abundance.  496 

Previous research has shown how spatio-temporal models can be used to control for interannual 497 

variation in the spatial distribution of fishing (Thorson et al., 2017; Grüss et al., 2019), but there 498 

has been less focus on controlling for differences in spatial distribution occurring at finer 499 

seasonal scales than quarterly (i.e., >4 seasons per year).  Seasonal fishery data could be 500 

particularly useful in conjunction with resource surveys, for example, where a seasonal spatio-501 

temporal model could be fitted to both data sources to index changes in phenology that affect the 502 

proportion of fish that are available to a given survey (Nichol et al., 2019). In addition, such an 503 

approach could be used to study how seasonal shifts in distribution are changing in response to 504 

climate, which may in turn affect availability to resource users or be useful as an environmental 505 

index within a stock-assessment model. 506 

 Results are complementary to the growing worldwide effort to document changes in the 507 

spatial distribution of fishes and many other taxa (Anderson et al., 2009).  In fishes, the rate of 508 
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climate-driven shift in distribution is often measured using “center of gravity,” ; that is, the 509 

centroid of the distribution measured as latitude, longitude, depth, or other location measures 510 

(Pinsky et al., 2013; Thorson et al., 2016a; Currie et al., 2019).  Center of gravity is a useful 511 

measure for comparing rates of climate-driven distribution shifts across regions but does not 512 

capture specifics about the density available to individual fishing ports or other partitions of 513 

available habitat (Rogers et al., 2019; Selden et al., 2020).  Similarly, we use abundance-514 

weighted average season as a measure of seasonal timing for available copepod prey; this 515 

follows similar practice measuring changes in phenology using a population average (Rogers and 516 

Dougherty, 2019).  While this aggregate measure of timing does not indicate total abundance or 517 

availability in specific seasons, we believe that this metric will provide a useful basis for 518 

comparisons of climate-driven shifts in phenology among regions, and hope that having a 519 

standardized measure facilitates future comparative research.   520 

 We note that seasonal spatio-temporal models also generate a new set of interesting questions 521 

to resolve when using results.  For example: 522 

1. Is the spring, fall, or DFO index of yellowtail flounder abundance most appropriate to 523 

include when fitting a stock assessment model, or perhaps some average of these different 524 

surveys?   525 

2. Is late summer/fall abundance of C. glacialis/marshallae the best predictor of pollock 526 

recruitment, or instead the abundance of C. glacialis/marshallae across all seasons within a 527 

given year (the area under the curve in each panel of Fig. 5)?   528 

3. Is abundance-weighted average season the best metric for measuring changes in phenology, 529 

or is it better to measure changes in the seasonal timing of emergence/disappearance of 530 
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copepods, analogous to measuring leading/trailing edges in spatial measures of distribution 531 

(Anderson et al., 2009)?   532 

These and other questions become apparent when explicitly accounting for seasonal variation 533 

within spatio-temporal models, and the solution will obviously depend upon how results are 534 

being used. Thus, these models open up new opportunities for study, as well as challenges for 535 

interpretation. We therefore argue that analysts should communicate clearly about how they 536 

interpret seasonal variation in any future applications of the seasonal spatio-temporal model.  We 537 

also note that developing sensitive diagnostics for model mis-specification, and simulation-538 

testing the likely performance of spatio-temporal models is an ongoing endeavor.  The package 539 

VAST used here has been simulation-tested elsewhere (Grüss et al., 2019; Johnson et al., 2019; 540 

Thorson et al., 2019; Brodie et al., 2020), but we recommend ongoing, independent testing to 541 

understand the potential impacts of model mis-specification.  Importantly, new forms of mis-542 

specification are plausible in seasonal models, e.g., varying rates of temporal change and/or 543 

spatial clustering in different seasons.   544 

 Given rapid changes in climate and its effects on the timing of seasonal processes of growth, 545 

migration, mortality, and reproduction, approaches for modeling processes that can handle 546 

seasonal and spatial processes are increasingly needed.   We foresee a wide range of future 547 

applications for spatial models that include both seasonal and interannual variation.  The model 548 

is implemented generically within publicly available software that also includes capacity for 549 

multivariate analysis, climate-linkages, and skillful near-term forecasting (Thorson, 2019b).  We 550 

hope that future users will contribute to documenting the benefits and drawbacks of this 551 

promising class of models for ecosystem science and management.   552 
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Table 1 – List of estimated parameters (and associated symbols) governing spatial and temporal 779 

variance (listing estimate “Est.” and standard error “SE”) for each case-study application; this 780 

corresponds to all estimated fixed effects except intercepts 𝜇𝜇𝛽𝛽, 𝛽𝛽𝑛𝑛𝑛𝑛(𝑢𝑢), and 𝛽𝛽𝑛𝑛𝑛𝑛(𝑦𝑦).  Parameters 781 

listed as “-“ correspond to terms that are dropped due to the corresponding variance approaching 782 

zero (see Table S3 for details).  Note that the eastern Bering Sea application does not include 783 

spatial or temporal variation in the first linear predictor, due to a near 100% encounter 784 

probability; linear transformation 𝐇𝐇 governing geometric anisotropy involves estimating two 785 

parameters which are listed first for each case-study.   786 

Parameter Symbol Northwest 
Atlantic 

Eastern Bering 
Sea 

  Est. SE Est SE 
Parameter #1 in 𝐇𝐇 - 0.264 0.083 0.421 0.082 
Parameter #2 in 𝐇𝐇 - 0.571 0.097 -0.221 0.088 
SD for spatial variation in 𝑛𝑛 𝜎𝜎𝑛𝑛𝑛𝑛 1.76 0.182   - - 
SD for spatial season-year interaction in 𝑛𝑛 𝜎𝜎𝑛𝑛𝑛𝑛 0.47 0.05   - - 
Natural log. for decorrelation rate in 𝑛𝑛 ln(𝜅𝜅𝑛𝑛) -3.296 0.096   - - 
SD for intercept season-year interaction in 𝑛𝑛 𝜎𝜎𝑛𝑛𝑛𝑛 - - - - 
Autocorrelation for intercepts in 𝑛𝑛 𝜌𝜌𝑛𝑛𝑛𝑛 - - - - 
Autocorrelation for spatial season-year 
interaction in 𝑛𝑛 𝜌𝜌𝑛𝑛𝑛𝑛 0.874 0.031   - - 
Natural log. for SD in spatial season and 
year effects in 𝑛𝑛 ln�𝜎𝜎𝑛𝑛𝑛𝑛� -0.638 0.135   - - 
SD for spatial variation in 𝑤𝑤 𝜎𝜎𝑤𝑤𝑤𝑤 0.479 0.069 1.481 0.170 
SD for spatial season-year interaction in 𝑤𝑤 𝜎𝜎𝑤𝑤𝑤𝑤 0.89 0.063 1.039 0.055 
Natural log. for decorrelation rate in 𝑤𝑤 ln(𝜅𝜅𝑤𝑤) -2.567 0.116 -4.488 0.063 
SD for intercept season-year interaction in 
𝑤𝑤 𝜎𝜎𝑤𝑤𝑤𝑤 - - - - 
Autocorrelation for intercepts in 𝑤𝑤 𝜌𝜌𝑤𝑤𝑤𝑤 - - - - 
Autocorrelation for spatial season-year 
interaction in 𝑤𝑤 𝜌𝜌𝑤𝑤𝑤𝑤 -0.149 0.085 0.721 0.034 
Natural log. for SD in spatial season and 
year effects in 𝑤𝑤 ln�𝜎𝜎𝑤𝑤𝑤𝑤�   - - -0.644 0.163 
Natural log. for SD of measurement error ln(𝜎𝜎𝑚𝑚) -0.133 0.04 -0.103 0.017 
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Fig. 1 – Data availability (y-axis) for season (colored line) and each year (x-axis) for case-studies 789 

in the Northwest Atlantic Ocean (top panel) and eastern Bering Sea (bottom panel), where the 790 

colorbar for each season is indicated in each legend.  791 
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Fig. 2 – Index of relative abundance (y-axis using log-scale; scaled to have mean of 1 across 794 

years) for a design-based index (black line), seasonal spatio-temporal model (blue line), or 795 

independent spatio-temporal model (red line) including +/- 1 standard error (shaded interval) of 796 

yellowtail flounder for 1985-2017 (x-axis) for each of three seasons (DFO, as well as spring and 797 

fall NEFSC bottom trawl surveys).  Note that the design-based and independent spatio-temporal 798 

models cannot estimate abundance for the DFO survey in 1985/1986, and therefore have no 799 

estimates for those years (top panel)    800 

 801 



 

 

Fig. 3 – Spatio-temporal variation in the log-linked linear predictor for numbers-density 𝜀𝜀𝑛𝑛∗(𝑠𝑠, 𝑡𝑡) 802 

for each location 𝑠𝑠 and year-season interval 𝑡𝑡 for yellowtail flounder on Georges Bank in the 803 

Northwest Atlantic Ocean for 1989-1992 (rows) of the 24 modeled years (1985-2017) and three 804 

seasonal surveys (columns) in each year (DFO Feb.-March, NEFSC Spring March-April, and 805 

NEFSC Fall Sept.-Nov. surveys).  Each panel also shows the location of available data in that 806 

season and year (black dots), which highlights the absence of data from DFO in the southwestern 807 

portion of the stock area.  Years are selected to highlight the estimates of increased density in the 808 

DFO survey in the southwestern portion 1990-1991 which is not sampled by that survey; this 809 

estimated hotspot is informed by sharing information among surveys.  The use of a log-linked 810 

linear predictor means, for example, that a location 𝑠𝑠 and year-season 𝑡𝑡 with a value of 811 

𝜀𝜀𝑛𝑛∗(𝑠𝑠, 𝑡𝑡) = 0.1 has an approximately exp(0.1) = 10.5% higher prediction of numbers-density 812 

𝑛𝑛∗(𝑠𝑠, 𝑡𝑡), while a location and time where 𝜀𝜀𝑛𝑛∗(𝑠𝑠, 𝑡𝑡) = 1.0 has an approximately exp(1.0) = 172% 813 

higher prediction of numbers-density 𝑛𝑛∗(𝑠𝑠, 𝑡𝑡) than the value otherwise expected for that location 814 

and time.   815 
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Fig. 4  – Natural logarithm of estimated density (vertically-integrated from 5 meters above seafloor to surface), ln(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ∙ 𝑘𝑘𝑚𝑚−2), 819 

for copepodite stages 3+ Calanus marshallae/glacialis for four selected years (rows) from 24 analyzed years (1993-2016) and nine 820 

month-long intervals in each year (columns).  Each panel also shows the location of available data in that season and year (black dots).   821 
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Fig. 5 – Natural logarithm of estimated total abundance (left-hand y-axis) for copepodite stage 824 

3+ Calanus marshallae/glacialis in Feb.-Oct. (x-axis) for each year (panels) from 1993-2016, 825 

estimated using a seasonal spatio-temporal model.  Each panel shows an estimate (black line) +/- 826 

one standard error (grey shaded interval), and also shows the sample size for each season (dashed 827 

line; using right-hand y-axis).  Note that the left and right-hand y-axes have identical range for 828 

all panels, but abundance (left-hand y-axis) is in log-space while sample size (right-hand y-axis) 829 

is in natural space. 830 
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Fig. 6 – Estimate of abundance-weighted average season (calculated using Eq. 11; black line 833 

with +/- one standard error as grey shaded area; scale on left-hand y-axis) in every year 1993-834 

2016 based on density estimates in every month Feb.-Oct. (x-axis) from a seasonal spatio-835 

temporal model compared with the summertime spatial extent of cold (≤ 2° 𝐶𝐶) near-bottom 836 

waters in the eastern Bering Sea (dashed line, “cold pool extent”; scale on right-hand y-axis).  837 

We also show the Pearson correlation between cold-pool extent and the abundance-weighted 838 

average season, as well as the standard error for this correlation based on 100 correlation values 839 

calculated when simulating densities from the joint precision of fixed and random effects 840 

(bottom right).   841 
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